Reply To:
Name - Reply Comment
Many factors have been influencing the natural rubber (NR) industry in the past quarter of a century. Growth in population and the development of world economy have enhanced the demand for goods and services, including rubber products. But the supply of rubber has not kept pace with the rise in demand.
There are also other factors like impact of climate change on NR output, role of hedge funds, futures market activities, exchange rate variations in currencies, rise in oil prices and stock position that have influenced the NR market. These have brought about fluctuations in NR prices, which have ultimately affected the growth prospects of the rubber producing sector.
The fluctuating NR price may also promote the tendency of NR consuming countries to go for more and more synthetic rubber (SR) in place of the high-cost NR component in their products and the growing demand for reclaimed rubber and the hunt for alternatives to NR are also matters of great concern for NR producers.
The NR industry therefore needs a dynamic production improvement policy to ensure its long-term viability and to meet the growing demand of the rubber products sector, which is currently reeling under insecurity of NR supply.
Clones of future
We should aim at developing ‘smart clones’ which should have high rubber and timber yields, faster growth and shorter gestation period, improved tolerance to diseases/pests, better adaptability to climate stress and are location-specific.
We must not worship any particular breeding strategy but select the one which can help to achieve the desired end-goal speedily and surely. Research should continue its clone-centric approach but it should make use of molecular breeding techniques such as marker-assisted selection to shorten the breeding cycle and get more number of agronomically important genes into an elite clone.
We should aim at developing ‘smart clones’ which should have high rubber and timber yields
Further, genetic improvement in Hevea (e.g. breaking the yield ceiling or pyramiding of multiple traits in one single clone, etc.) may be difficult through conventional breeding/selection route. The latest technologies such as molecular technology, nano technology, information technology, GIS and remote sensing, etc. should be profitably made use of for advancing scientific research in NR.
Developments
Substantial progress has been made during the last century in improving the production and productivity of natural rubber. While the average yield of tree raised from open-pollinated seeds derived from the original” Wickham gene pool” was only about 320 kgjha, plantations which can yield over 3000 kg/ha are now in existence. Nevertheless, we have a long way to go before reaching the potential yield plateau.
Limits to yield of rubber
Rubber is a vegetative plant product and superficially it may appear important to improve the capacity to accumulate dry matter. If all the solar energy that falls in the tropics is utilised for dry matter production, it could produce approximately 1300 tons ha-1 yr-1 but this is just not possible because 60 percent of the solar radiations cannot be absorbed by plants.
Of the remaining 40 percent in a non-limiting environment, there are still physical losses of radiations besides respiratory losses. This works out to 71 gjm2jday dry matter if only carbohydrates are synthesized. If there is uniform radiation throughout the year, about 260 tons of dry matter can be produced per year. At present the best ratio between dry matter production and rubber yield is 11.1 percent.
Disregarding possible negative correlations, a maximum of 28.6 tonnes of rubber per year may be the upper limit of yield. This calculation assumes that throughout the year there is radiation approximately 500 cal em 2 day-> without limitation of nutrients, water and carbon dioxide and that the interception is complete.
In rainy months the amount of radiations tends to be low, whereas during the sunny days water usually becomes a limiting factor. If we give due regard to these factors, it is unlikely that presently more than 124 tonnes dry matter ha-1 yr-1 could be produced.
Assuming that 11 percent of this could be rubber, we can expect about 13.6 tonnes rubber ha-1 yr-1. Indeed it would be reasonable to fix this as an attainable aim. At present, the published reports suggest that yields of the order of 3.5 tonnes/ha/yr of rubber have been obtained without Yield stimulation.
However, In High Yielding Estates only 1200 kg ha-! yr-! of rubber has been obtained. The average yield in most countries including Sri Lanka continues to be only around 1000 to 1400 kilogram ha per year. Thus, we have a gap of nearly 10 tonnes between the realisable upper yield limit and the record yield so far obtained. The gap between record yields and the average yield of good estates is about two tonnes. The national averages tend to be only half of that of good estate.
Factors controlling yield in rubber
The yield of rubber depends upon the ability of plants to accumulate dry weight and convert a proportion of it into latex and rubber. The proportion of rubber to dry matter accumulation capacity is a measure of harvest index (HI). Variability in this component was observed to range from 3.0 to 11.1 percent.
There was an inverse relationship between dry matter accumulation and rubber yield. We can compare this situation with that of other crop plants, such as wheat, wherein the number of tillers is often negatively correlated to the number of grains per ear or grain weight.
A further analysis of components is essential for deciding the methodology for improvement.
When there is more dry matter accumulation but a low percentage of rubber, it could be due to fewer laticiferous cells per unit area or a high plugging index. Conversely, the high proportion may be related to more laticiferous cells per unit area and low plugging index. If one attempts to combine these apparently contrasting characters, two points have to be kept in mind.